آيا جوليوس سزار عدد است ؟؟!!؟

  آيا واقعاً ممكن است جوليوس سزار، امپراتور روم، عدد باشد؟ يعني آيا مي شود كه سزار محمول خواصي باشد كه اصالتاً از آن اعداد است (مثلاً زوج بودن، فرد بودن، اول بودن و غيره)؟ آيا ممكن است شيئي انضمامي مثل سزار يا هر شخص ديگري عدد باشد؟ آيا ممكن است سزار مكاني را در دنباله اعداد طبيعي يا حقيقي اشغال كند؟ آيا اصلاً اين پرسش ها معنايي دارند؟ يعني آيا ارزش صدقي (صدق يا كذب) دارند؟ يا بالكل بي معنا هستند؟ هر نظريه اي در فلسفه رياضي كه نتواند به اين پرسش ها پاسخ دهد با «مشكل جوليوس سزار» روبه رو است.

ريشه اين سوال هاي نسبتاً عجيب و غريب برمي گردد به گوتلوب فرگه. فرگه در شاهكارش، بنيادهاي حساب، سعي مي كند كه حساب را به منطق تحويل دهد، و كار خود را با واقعيت بسيار ملموسي در عمل شمارش شروع مي كند.

 
اصل هيوم (HP) عدد مفهوم F (يعني تعداد شيءهايي كه ذيل مفهوم F درمي آين آيا واقعاً ممكن است جوليوس سزار، امپراتور روم، عدد باشد؟ يعني آيا مي شود كه سزار محمول خواصي باشد كه اصالتاً از آن اعداد است (مثلاً زوج بودن، فرد بودن، اول بودن و غيره)؟ آيا ممكن است شيئي انضمامي مثل سزار يا هر شخص ديگري عدد باشد؟ آيا ممكن است سزار مكاني را در دنباله اعداد طبيعي يا حقيقي اشغال كند؟ آيا اصلاً اين پرسش ها معنايي دارند؟ يعني آيا ارزش صدقي (صدق يا كذب) دارند؟ يا بالكل بي معنا هستند؟ هر نظريه اي در فلسفه رياضي كه نتواند به اين پرسش ها پاسخ دهد با «مشكل جوليوس سزار» روبه رو است.

 ريشه اين سوال هاي نسبتاً عجيب و غريب برمي گردد به گوتلوب فرگه. فرگه در شاهكارش، بنيادهاي حساب، سعي مي كند كه حساب را به منطق تحويل دهد، و كار خود را با واقعيت بسيار ملموسي در عمل شمارش شروع مي كند؛

 اصل هيوم (HP) عدد مفهوم F (يعني تعداد شيءهايي كه ذيل مفهوم F درمي آيند) مساوي است با عدد مفهوم G اگر و تنها اگر تناظري يك به يك بين شيءهاي دو مفهوم F و G برقرار باشد.

 HP در واقع معياري براي اينهماني با تفاوت اعداد به دست مي دهد، ولي به هيچ وجه نشان نمي دهد كه اعداد خودشان چه اشيايي هستند. به عبارتي، HP چيزي در مورد تعيين ارزش صدق جمله اي به شكل «عدد مفهوم F = q» (كه q مي تواند هر ثابتي مثل «جوليوس سزار» باشد) به دست نمي دهد. به نظر فرگه، جملاتي مثل HP نمي توانند اينهماني اصيل و دقيق اعداد را نشان دهند. يعني اگر قرار است اينهماني دقيق را به دست دهيم، هم بايد ارزش صدق «عدد F = عدد G» را به دست دهيم و هم ارزش صدق «عدد F = q». و HP فقط ارزش صدق عبارات اول را تعيين مي كند. به اين دليل بود كه فرگه HP را رها كرد و اصل ديگري را به جاي آن نشاند و به پارادوكس راسل اصابت كرد!

 در اين چند سطر، خيلي تند و خلاصه، صرفاً به بعضي از مشكلات نهفته در دل اين مساله اشاره مي كنيم؛

 ما به كمك عقل سليم (common sense) مي دانيم كه سزار عدد نيست و حتي ممكن نيست عدد باشد، ولي اين قطعاً چيزي نيست كه HP به ما مي گويد. اگر بناست ضوابط كافي براي اينهماني اعداد را به دست دهيم، بايد فاعل شناسايي را كه اعداد را مورد شناسايي قرار مي دهد، قادر سازد كه اعداد را از همه انواع ديگر اشيا متمايز كند (discriminate). اما توسل به معيار توانايي تمايز گذاشتن در گرو حل مسائل ديگري دارد؛ كودك مي تواند از طريق تناظر يك به يك به اعداد ارجاع دهد بي آنكه توانايي كاملي براي تمايز گذاشتن ميان اعداد و اشخاص (آنطور كه فرگه داشت) داشته باشد. پس چه بسا HP توانايي اوليه براي ارجاع و معرفي اعداد را به دست دهد. ولي اين مساله به هيچ وجه قطعي نيست. چون به هر حال، هر توانايي اوليه اي براي ارجاع به اعداد و استفاده از آنها در انديشه (thought) و كلام (talk) مستلزم يك درك بنيادين از نوع يا جنس شيءهاي مورد ارجاع يا اشاره دارد. پس شايد به اين راحتي نتوان ادعا كرد كسي كه صرفاًً HP را آموخته مي تواند در مورد اعداد بينديشد يا راجع به آنها صحبت كند؛ چون HP نوع اشياي مورد بحث را مشخص نمي كند (نمي گويد سزار هستند يا مجموعه يا...) از طرفي، فرض كنيم به كودكي صرفاً HP آموخته شده، و كودك، مسلح به تنها همين سلاح، قضاياي بنيادين حساب را مي آموزد و ثابت مي كند و در امتحانات نمرات خوبي هم مي گيرد (چنين چيزي كاملاً ممكن است؛ نگاه كنيد به (Wright۱۹۸۳) و (Boolos۱۹۸۷). اگر او ندانست كه سزار عدد است يا نه ( كه نمي داند)، بايد نتيجه بگيريم كه نمرات او حقه بازي اند؟ يا به صدق قضاياي حساب معرفت ندارد؟ بنابراين، آن كودك توانايي هاي كافي اي براي قضاوت در مورد نسبت هاي عددي دارد ولي انگار فاقد نوعي معرفت متافيزيكي است. پس اجازه دهيد كه كمي راجع به بعد متافيزيكي مساله جوليوس سزار صحبت كنيم؛ در اينجا بايد بگوييم كه چرا محال است كه انواع كاملاً متفاوتي از شيء ها (اعداد و اشخاص) همپوشاني كنند.

 مي توانيم دلايلي بياوريم؛ اعداد انتزاعي اند و اشخاص انضمامي. يك راه اثبات اين خاصيت براي اعداد اين است كه بگوييم اعداد بي نهايت اند و اشخاص متناهي. ولي تنها نتيجه اي كه از اين حرف مي گيريم اين است كه همه اعداد نمي توانند انضمامي باشند، ولي چه بسا بعضي از اعداد انضمامي باشند. استدلال دوم براي اثبات «+» اين است كه بگوييم صدق هاي رياضي صدق هايي ضروري اند، و صدق هاي ضروري مستلزم موجودات ضروري اند. از آنجا كه اشخاص ً انضمامي، از جمله سزار، ممكن هستند، پس شيءهايي كه صدق هاي رياضيات بر آنها دلالت مي كنند ممكن نيست انضمامي باشند. اگر قرار است اين استدلال را به كرسي بنشانيم، بايد ابتدا اين ادعا را اثبات كنيم كه اشياي رياضي، به قول كريپكي، دلالتگر ثابت (rigid designator) اند. پس سوال اصلي «+» اين است كه چرا شيءهاي نوع K۱ نمي توانند خواص شيءهاي نوع K۲ را داشته باشند؟ و اين ما را بلافاصله به مساله سنتي متافيزيك، يعني جوهر(substance)، مي كشاند. و اصلاً معلوم نيست كه دست و پنجه نرم كردن با اين مساله غم انگيزتر از تلاش براي پاسخ به پرسش هاي اول مقاله نباشد.

 

هندسه نااقليدسي

هندسه ي اقليدسي، همان هندسه اي است كه شما در دبيرستان و راهنمايي خوانده ايد يا مي خوانيد. هندسه اي است كه بيش تر براي تجسم جهان مادي به كار مي بريم. اين هندسه از كتابي به نام اصول به دست ما رسيده كه توسط اقليدس ، رياضي دان يوناني ، در حدود ۳۰۰ سال پيش از ميلاد مسيح نگاشته شده است . تصوري كه ما بر اساس اين هندسه ازجهان مادي پيدا كرده ايم تا حدي زياد توسط آيزاك نيوتن در اواخر سده ي هفدهم ترسيم شده است. اقليدس شاگرد مكتب افلاطون بود.درحدود ۳۰۰ سال پيش از ميلاد، روش قاطع هندسه ي يوناني و نگره ي اعداد را دراصول سيزده جلديش منتشر كرد. با تنظيم اين شاهكار، اقليدس تجربه وكارهاي مهم پيشينيان خود را در سده هاي جلوتر گردآوري كرد.كار عظيم اقيدس اين بودكه چند اصل ساده ، چند حكم كه بي نياز به توجيهي پذيرفتني بودند را دستچين كرد واز آن ها ۴۶۵گزاره نتيجه گرفت كه بسياري از آن ها پيچيده بودند و به طور شهود ي بديهي نبودند وتمام اطلاعات زمان او را دربرداشتند .

 يك دليل زيبايي اصول اقليدس اين است كه اين همه را از آن اندك نتيجه گرفت .درافسانه آمده است كه يكي از آموزندگان مبتدي هندسه از اقليدس پرسيد : ( از آموختن اين مطالب چه عايد من مي شود ؟ ) اقليدس غلامش را خواند وگفت ((سكه اي به او بده ، چون كه مي خواهد از آن چه كه فرا مي گيرد، چيزي عايدش شود )).

 حال دراين جا به بيان پنج اصل اقليدس مي پردازيم .

 ـ اصل اول اقليدس : به ازاي هر نقطه ي p وهر نقطه ي Q كه با p مساوي نباشد، خط يكتايي وجود داردكه برp و Q مي گذرد.

 اين اصل اغلب به صورت غير رسمي چنين بيان مي شود : "هر دو نقطه يك خط منحصر به فرد را مشخص مي سازند ."

 ـ اصل دوم اقليدس : به ازاي هر پاره خط AB وهر پاره خط CD نقطه ي منحصر به فردي چون E وجود دارد، چنان چه؛ B ميان A وE واقع است وپاره خط CD با پاره خط BE قابل انطباق است .

 اين اصل اغلب به طور غير رسمي چنين بيان مي شود : "هر پاره خط AB را مي توان به اندازه ي پاره خط BE ، كه با پاره خط CD قابل انطباق است امتداد داد ."

 ـ اصل سوم اقليدس : به ازاي هر نقطه ي A كه با O مساوي نباشد، دايره اي به مركز O وشعاع OA وجود دارد .

 ـ اصل چهارم اقليدس : همه ي زاوياي قائمه باهم قابل انطباق هستند.

چهار اصل اول اقليدس هميشه به راحتي مورد قبول رياضي دانان بوده است. ولي اصل پنجم ( اصل توازي ) تا سده ي نوزدهم موجب جدل و چون و چرا بوده است درواقع چنان چه كه بعداً خواهيد ديد توجه به صورت هاي مختلف اصل توازي اقليدس است كه موجب بسط و توسعه ي هندسه هاي نااقليدسي شده است .

دراين جا ما اصل توازي اقليدس را بيان مي كنيم ( به خاطر دشواري هايي كه وجود دارد ) وبه جاي آن اصل پلي فر را كه معادل اصل توازي اقليدس است بيان مي كنيم .

ـ اصل پنجم اقليدس ( اصل پلي فر يا اصل توازي ) : به ازاي هر خط L وهر نقطه ي p غير واقع برآن، تنها يك خط مانند m وجود دارد چنان چه از p مي گذرد و با L موازي است .

اصل پنجم با هر چهار اصل ديگر متفاوت است . بدين معني كه ما نمي توانيم به طور تجربي تحقيق كنيم كه آيا دو خط هم ديگر را قطع مي كنند يانه . زيرا كه ما فقط پاره خط ها را مي توانيم رسم كنيم نه خطها را . مي توانيم پاره خط ها را بيش از بيش امتداد دهيم تا ببينيم كه آيا هم ديگر قطع مي كنند يا نه، ولي نمي توانيم آن ها را تا بي نهايت امتداد دهيم .

رياضي دانان درطول دو هزار سال تلاش كردند تا آن را از چهار اصل ديگر نتيجه بگيرند و يا اصل ديگري را كه به خودي خود بداهت بيش تري داشته باشد، جانشين آن سازند. همه ي تلاش ها براي اين كه آن را از چهار اصل ديگر نتيجه بگيرند به ناكامي انجاميد . رياضي دانان به تدريج نااميد مي شدند . ولي در اوايل سده ي نوزدهم دو هندسه ي ديگري پيشنهاد شد . يكي هندسه ي هذلولوي ( از كلمه ي يوناني هيپر بالئين به معني افزايش يافتن كه در آن فاصله ي ميان نيم خط ها افزايش مي يابد و ديگري هندسه ي بيضوي (از كلمه ي يوناني اليپن به معني كوتاه شدن) كه در اين ، فاصله رفته رفته كم مي شود و سرانجام نيم خط ها هم ديگر را مي برند (قطع مي كنند). اين هندسه هاي نا اقليدسي بعد ها توسط ك. ف . گاؤس و گ. ف. ب ريمان در قالب هندسه ي كلي تري بسط داده شدند.

ما سعي مي كنيم بيش تر بحث مان در حوزه ي هذلولوي باشد، زيرا هندسه ي هذلولوي تنها به تغيير يكي از اصول اقليدس نياز دارد و مي تواند به همان آساني هندسه ي دبيرستاني فهميد ه شود. ولي در مورد هندسه هاي ديگر، مثل هندسه ي بيضوي ، بحث خيلي مشكل تر مي باشد و درك آن نياز به دانستن مفاهيم زيادي دارد كه از حوصله ي بحث ما خارج است.

ـ قضيه ي كلي هذلولوي: درهندسه ي هذلولوي به ازاي هر خط L و هر نقطه ي p غير واقع بر L لااقل دو خط موازي با L ازp مي گذرند .دانش آموزان مي توانند اين قضيه را با اصل پنجم اقليدس كه درصفحات قبل آمده است مقايسه نمايند وتفاوت هاي اين دو هندسه را به وضوح مشاهده كنند .

ـ قضيه : درهندسه ي هذلولوي مستطيل وجود ندارد ومجموع زواياي همه ي مثلث ها از است .

ـ فرع: درهندسه ي هذلولوي همه ي چهار ضلعي هاي كوژ، مجموع زوايايي كم تر از دارند .
 

X