آشنايي با عدد e

پايه لگاريتم طبيعي (~ 2.71828)، اولين بار توسط لئونارد اولر (Leonhard Euler 1707-83) يكي از باهوشترين رياضي دانان تاريخ رياضيات مورد استفاده قرار گرفت.

در يكي از دست خطهاي اولر كه ظاهرا" بين سالهاي 1727 و 1728 تهيه شده است با تيتر Meditation on experiments made recently on the firing of cannon اولر از عدي بنام e صحبت مي كند. هر چند او رسما" اين نماد را در سال 1736 در رساله اي بنام Euler`s Mechanica معرفي ميكند.


 در واقع بايد اعتراف كرد كه اولر كاشف يا مخترع عدد e نبوده است بلكه سالها قبل فردي بنام جان ناپير (John Napier 1550-1617) در اسكاتلند هنگامي كه روي لگاريتم بررسي مي كرده است بحث مربوط به پايه طبيعي لگاريتم را به ميان كشيده است. فراموش نكنيد كه شواهد نشان ميدهد حتي در قرن هشتم ميلادي هندي ها با محاسبات مربوط به لگاريتم آشنايي داشته اند.
در اينكه چرا عدد ~ 2.71828 بصورت e توسط اولر نمايش داده شده است صحبت هاي بسياري است. برخي e را اختصار exponential مي دانند، برخي آنرا ابتداي اسم اولر (Euler) مي دانند و برخي نيز ميگويند چون حروف a,b,c و d در رياضيات تا آن زمان به كررات استفاده شده بود، اولر از e براي نمايش اين عدد استفاده كرد. هر دليلي داشت به هر حال امروزه اغلب اين عدد را با نام Euler مي شناسند.

اولر هنگامي كه روي برخي مسائل مالي در زمينه بهره مركب در حال كار بود به عدد e علاقه پيدا كرد. در واقع او دريافت كه در مباحث بهره مركب، حد بهره به سمت عددي متناسب (يا مساوي در شرايط خاص) با عدد e ميل ميكند. بعنوان مثال اگر شما 1 ميليون تومان با نرخ بهره 100 درصد در سال بصورت مركب و مداوم سرمايه گذاري كنيد در پايان سال به رقمي حدود 2.71828 ميلون تومان خواهيد رسيد.

در واقع در رابطه بهره مركب داريم :

 
P = C (1 + r/n) nt


كه در آن P مقدار نهايي سرمايه و بهره است، C مقدار اوليه سرمايه گذاري شده،r نرخ بهره، n تعداد دفعاتي است كه در سال به سرمايه بهره تعلق مي گيرد و t تعداد سالهايي است كه سرمايه گذاري مي شود.

در اين رابطه اگر n به سمت بي نهايت ميل كند - حالت بهره مركب - فرمول را مي توان بصورت زير ساده كرد :

 
P = C e rt


اولر همچنين براي محاسبه عدد e سري زير را پيشنهاد داد :

 
e = 1+ 1/2 + 1/(2 x 3) + 1/(2 x 3 x 4) + 1/(2 x 3 x 4 x 5) + . . .


لازم است ذكر شود كه اولر علاقه زيادي به استفاده از نمادهاي رياضي داشت و رياضيات امروز علاوه بر عدد e در ارتباط با مواردي مانند i در بحث اعداد مختلط، f در بحث توابع و بسياري ديگر نمادها مديون بدعت هاي اولر است .


X