مقايسۀ رياضيات يوناني و هندي

بين رياضيات يوناني و هندي اختلاف زيادي وجود دارد. در وهلۀ اول ، هندياني كه در رياضيات كار مي كردند ، خود را در اصل منجم مي پنداشتند ، و لذا رياضيات هندي عمدتا به صورت ابزاري در خدمت نجوم باقي ماند ؛ اما در يونان ، رياضيات هستي مستقلي يافت و رياضيات به خاطر خود رياضيات مورد مطالعه قرار گرفت . همچنين ، به خاطر وجود نظام كاستي ، رياضيات در هند تقريبا به طور كامل به وسيلۀ روحانيون رشد و نمو يافت؛ در يونان باب رياضيات بر هر كسي كه پرواي مطالعۀ آن را داشت ، مفتوح بود . بعلاوه ، هنديان حسابگراني ممتاز ولي هندسه داناني متوسط بودند ، يونانيان در هندسه تفوق يافتند ولي به كارهاي محاسباتي كمتر توجهي از خود نشان دادند . حتي مثلثات هندي ، كه قابل ستايش بود، ماهيت حسابي داشت ؛ مثلثات يوناني واجد خصيصۀ هندسي بود هنديان به نظم مي نوشتند و آثار خود را اغلب در قالب زباني مبهم و مرموز در مي آوردند، يونانيان سعي در بيان واضح و منطقي داشتند. رياضيات هندي عمدتاً تجربي بود كه براهين و روشهاي استخراج به ندرت در آن عرضه مي شد ، صفت مميزۀ رياضيات يوناني در اصرار آن بر براهين دقيق است . رياضيات هندي از نظر كيفيت اصلا يكدست نيست ، رياضيات پرمايه و ضعيف اغلب در كنار هم ظاهر مي شوند ؛ يونانيان ظاهرا غريزه اي داشتند كه آنها نويسندۀ مسلمان ابوريحان بيروني در كتاب معروفش تحقيق ماللهند، رياضيات هندي ، بر خلاف رياضيات يوناني كه كيفيتي يكدست عالي دارد « مخلوطي است از صدف و خزف ... يا ممزوجي از در پر بها و سنگريزۀ بي بها » . قسمتي از اختلاف بين رياضيات يوناني و هندي ، امروزه در تفاوت بين بسياري از كتابهاي درسي مقدماتي جبر و هندسه ما جنبۀ دائمي يافته است .

تاريخچه عدد صفر

يكي از معمول ترين سئوالهائي كه مطرح مي شود اين است كه: چه كسي صفر را كشف كرد؟ البته براي جواب دادن به اين سئوال بدنبال اين نيستيم كه بگوئيم شخص خاصي صفر را ابداع و ديگران از آن زمان به بعد از آن استفاده مي كردند.

اولين نكته شايان ذكر در مورد عدد صفر اين است كه اين عدد دو كاربرد دارد كه هر دو بسيار مهم تلقي مي شود يكي از كاربردهاي عدد صفر اين است كه به عنوان نشانه اي براي جاي خالي در دستگاه اعداد (جدول ارزش مكاني اعداد) بكار مي رود. بنابراين در عددي مانند 2106 عدد صفر استفاده شده تا جايگاه اعداد در جدول مشخص شود كه بطور قطع اين عدد با عدد 216 كاملاً متفاوت است. دومين كاربرد صفر اين است كه خودش به عنوان عدد بكار مي رود كه ما به شكل عدد صفر از آن استفاده مي كنيم.

هيچكدام از اين كاربردها تاريخچه پيدايش واضحي ندارند. در دوره اوليه تاريخ كاربرد اعداد بيشتر بطور واقعي بوده تا عصر حاضر كه اعداد مفهوم انتزاعي دارند. بطور مثال مردم دوران باستان اعداد را براي شمارش تعداد اسبان، ... بكار مي برند و در اينگونه مسائل هيچگاه به مسئله اي برخورد نمي كردند كه جواب آن صفر يا اعداد منفي باشد.

بابليها تا مدتها در جدول ارزش مكاني هيچ نمادي را براي جاي خالي در جدول بكار نمي بردند. مي توان گفت از اولين نمادي كه آنها براي نشان دادن جاي خالي استفاده كردن گيومه (") بود. مثلاً عدد6"21 نمايش دهنده 2106 بود. البته بايد در نظر داشت كه از علائم ديگري نيز براي نشان دادن جاي خالي استفاده مي شد وليكن هيچگاه اين علائم به عنوان آخرين رقم آورده نمي شدندبلكه هميشه بين دو عدد قرار مي گيرند بطور مثال عدد "216 را با اين نحوه علامت گذاري نداريم. به اين ترتيب به اين مطلب پي مي بريم كه كاربرد اوليه عدد صفر براي نشان دادن جاي خالي اصلاً به عنوان يك عدد نبوده است.

البته يونانيان هم خود را از اولين كساني مي دانند كهدرجاي خالي ,صفر استفاده مي كردند اما يونانيان دستگاه اعداد (جدول ارزش مكاني اعداد) مثل بابليان نداشتند. اساساً دستاوردهاي يونانيان در زمينه رياضي بر مبناي هندسه بوده و به عبارت ديگر نيازي نبوده است كه رياضي دانان يوناني از اعداد نام ببرند زير آنها اعداد را بعنوان طول خط مورد استفاده قرار مي دادند.

البته بعضى ازرياضي دانان يوناني ثبت اطلاعات نجومي را بر عهده داشتند. در اين قسمت به اولين كاربرد علامتي اشاره مي كنيم كه امروزه آن را به اين دليل كه ستاره شناسان يوناني براي اولين بار علامت 0 را براي آن اتخاذ كردند، عدد صفر مي ناميم. تعداد معدودي از ستاره شناسان اين علامت را بكار بردند و قبل از اينكه سرانجام عدد صفر جاي خود را بدست آورد، ديگر مورد استفاده قرار نگرفت و سپس در رياضيات هند ظاهر شد.

هنديان كساني بودند كه پيشرفت چشمگيري در اعداد و جدول ارزش مكاني اعداد ايجاد كردند هنديان نيز از صفر براي نشان دادن جاي خالي در جدول استفاده مي كردند.

اكنون اولين حضور صفر را به عنوان يك عدد مورد بررسي قرار مي دهيم اولين نكته اي كه مي توان به آن اشاره كرد اين است كه صفر به هيچ وجه نشان دهنده يك عدد بطور معمول نمي باشد. از زمانهاي پيش اعداد به مجموعه اي از اشياء نسبت داده مي شدند و در حقيقت با گذشت زمان مفهوم صفر و اعداد منفي كه از ويژگيهاي مجموعه اشياء نتيجه نمي شدند، ممكن شد. هنگاميكه فردي تلاش مي كند تا صفر و اعداد منفي را بعنوان عدد در نظر بگيريد با اين مشكل مواجه مي شود كه اين عدد چگونه در عمليات محاسباتي جمع، تفريق، ضرب و تقسيم عمل مي كند. رياضي دانان هندي سعي بر آن داشتند تا به اين سئوالها پاسخ دهندو در اين زمينه نيز تا حدودى موفق بوده اند .

اين نكته نيز قابل ذكر است كه تمدن ماياها كه در آمريكاي مركزي زندگي مي كردند نيز از دستگاه اعداد استفاده مي كردند و براي نشان دادن جاي خالي صفر را بكار مي برند.

بعدها نظريات رياضي دانان هندي علاوه بر غرب، به رياضي دانان اسلامي و عربي نيز انتقال يافت. فيبوناچي، مهمترين رابط بين دستگاه اعداد هندي و عربي و رياضيات اروپا مي باشد.

قوانين جادويي اعداد

سياري از رياضيدانان قديم عقيده داشتند كه قوانين جادويي بر اعداد حكمفرماست . ان ها سعي مي كردند به اين قوانين دست يابند و به اين ترتيب بر ديگران برتري پيدا كنند. هنوز هم عده اي از مردم به اين اعداد و نقش جادويي ان ها اعتقاد دارند .

اگر مي خواهيد عدد جادويي نامتان را بدانيد طبق جدول زير عمل كنيد .

الف  1 ب  2 پ  3 ت  4 ث   5 ج    6 چ    7
ح    8 خ    9
د    1
ذ   2
 ر  3
 ز  4
 ژ   5
 س  6
 ش  7
 ص 8
ض  9
ط   1
ظ  2
ع   3
 غ  4
 ف  5
 ق   6
 ك   7
 گ  8
 ل   9
م    1
ن  2
 و  3
 ه   4
 ي  5
       


نام و نام خانوادگي تان را بنويسيد.           محمد خوارزمي

عدد هر حرف را زير آن بنويسيد               ۵۱۴۳۱۳۹۱۱۱۸۱ 

عدد ها را با هم جمع كنيد .

۳۸=۱+۸+۱+۱+۱+۹+۳+۱+۳+۴+۱+۵

رقم هاي بهدست امده را با هم جمع كنيد :      ۱۱=۸+۳

اين كار را ان قدر ادامه دهيد تا يك عدد يك رقمي بين ۱ تا ۹ به دست آوريد.             ۲=۱+۱

اين عدد جادويي نامتان است :         ۲

در رمز نويسي از اعداد به جاي حروف استفاده مي كنند . براي حفاظت ياد داشت هاي امنيتي از جدول هاي مختلف استفاده مي شود . براي خواندن رمز بايد جدول رمز ها را داشته باشيم . رمز نويسي و رمز خواني بخش كوچكي از كار برد حروف است كه به ان جبر مي گوييم .  خوارزمي رياضيدان مسلمان ايراني حدود سال ۱۳۰ هجري شمسي در شهر خوارزم كه امروزه به آن خيوه مي گويند٫ از حروف براي نشان دادن اعداد نا معلوم استفاده مي كرد .

او در كتاب الجبر كه به بيشتر زبان هاي دنيا ترجمه شده است ٫ به نمايش رقم ها با حروف اشاره كرده است .

آيا جوليوس سزار عدد است ؟؟!!؟

  آيا واقعاً ممكن است جوليوس سزار، امپراتور روم، عدد باشد؟ يعني آيا مي شود كه سزار محمول خواصي باشد كه اصالتاً از آن اعداد است (مثلاً زوج بودن، فرد بودن، اول بودن و غيره)؟ آيا ممكن است شيئي انضمامي مثل سزار يا هر شخص ديگري عدد باشد؟ آيا ممكن است سزار مكاني را در دنباله اعداد طبيعي يا حقيقي اشغال كند؟ آيا اصلاً اين پرسش ها معنايي دارند؟ يعني آيا ارزش صدقي (صدق يا كذب) دارند؟ يا بالكل بي معنا هستند؟ هر نظريه اي در فلسفه رياضي كه نتواند به اين پرسش ها پاسخ دهد با «مشكل جوليوس سزار» روبه رو است.

ريشه اين سوال هاي نسبتاً عجيب و غريب برمي گردد به گوتلوب فرگه. فرگه در شاهكارش، بنيادهاي حساب، سعي مي كند كه حساب را به منطق تحويل دهد، و كار خود را با واقعيت بسيار ملموسي در عمل شمارش شروع مي كند.

 
اصل هيوم (HP) عدد مفهوم F (يعني تعداد شيءهايي كه ذيل مفهوم F درمي آين آيا واقعاً ممكن است جوليوس سزار، امپراتور روم، عدد باشد؟ يعني آيا مي شود كه سزار محمول خواصي باشد كه اصالتاً از آن اعداد است (مثلاً زوج بودن، فرد بودن، اول بودن و غيره)؟ آيا ممكن است شيئي انضمامي مثل سزار يا هر شخص ديگري عدد باشد؟ آيا ممكن است سزار مكاني را در دنباله اعداد طبيعي يا حقيقي اشغال كند؟ آيا اصلاً اين پرسش ها معنايي دارند؟ يعني آيا ارزش صدقي (صدق يا كذب) دارند؟ يا بالكل بي معنا هستند؟ هر نظريه اي در فلسفه رياضي كه نتواند به اين پرسش ها پاسخ دهد با «مشكل جوليوس سزار» روبه رو است.

 ريشه اين سوال هاي نسبتاً عجيب و غريب برمي گردد به گوتلوب فرگه. فرگه در شاهكارش، بنيادهاي حساب، سعي مي كند كه حساب را به منطق تحويل دهد، و كار خود را با واقعيت بسيار ملموسي در عمل شمارش شروع مي كند؛

 اصل هيوم (HP) عدد مفهوم F (يعني تعداد شيءهايي كه ذيل مفهوم F درمي آيند) مساوي است با عدد مفهوم G اگر و تنها اگر تناظري يك به يك بين شيءهاي دو مفهوم F و G برقرار باشد.

 HP در واقع معياري براي اينهماني با تفاوت اعداد به دست مي دهد، ولي به هيچ وجه نشان نمي دهد كه اعداد خودشان چه اشيايي هستند. به عبارتي، HP چيزي در مورد تعيين ارزش صدق جمله اي به شكل «عدد مفهوم F = q» (كه q مي تواند هر ثابتي مثل «جوليوس سزار» باشد) به دست نمي دهد. به نظر فرگه، جملاتي مثل HP نمي توانند اينهماني اصيل و دقيق اعداد را نشان دهند. يعني اگر قرار است اينهماني دقيق را به دست دهيم، هم بايد ارزش صدق «عدد F = عدد G» را به دست دهيم و هم ارزش صدق «عدد F = q». و HP فقط ارزش صدق عبارات اول را تعيين مي كند. به اين دليل بود كه فرگه HP را رها كرد و اصل ديگري را به جاي آن نشاند و به پارادوكس راسل اصابت كرد!

 در اين چند سطر، خيلي تند و خلاصه، صرفاً به بعضي از مشكلات نهفته در دل اين مساله اشاره مي كنيم؛

 ما به كمك عقل سليم (common sense) مي دانيم كه سزار عدد نيست و حتي ممكن نيست عدد باشد، ولي اين قطعاً چيزي نيست كه HP به ما مي گويد. اگر بناست ضوابط كافي براي اينهماني اعداد را به دست دهيم، بايد فاعل شناسايي را كه اعداد را مورد شناسايي قرار مي دهد، قادر سازد كه اعداد را از همه انواع ديگر اشيا متمايز كند (discriminate). اما توسل به معيار توانايي تمايز گذاشتن در گرو حل مسائل ديگري دارد؛ كودك مي تواند از طريق تناظر يك به يك به اعداد ارجاع دهد بي آنكه توانايي كاملي براي تمايز گذاشتن ميان اعداد و اشخاص (آنطور كه فرگه داشت) داشته باشد. پس چه بسا HP توانايي اوليه براي ارجاع و معرفي اعداد را به دست دهد. ولي اين مساله به هيچ وجه قطعي نيست. چون به هر حال، هر توانايي اوليه اي براي ارجاع به اعداد و استفاده از آنها در انديشه (thought) و كلام (talk) مستلزم يك درك بنيادين از نوع يا جنس شيءهاي مورد ارجاع يا اشاره دارد. پس شايد به اين راحتي نتوان ادعا كرد كسي كه صرفاًً HP را آموخته مي تواند در مورد اعداد بينديشد يا راجع به آنها صحبت كند؛ چون HP نوع اشياي مورد بحث را مشخص نمي كند (نمي گويد سزار هستند يا مجموعه يا...) از طرفي، فرض كنيم به كودكي صرفاً HP آموخته شده، و كودك، مسلح به تنها همين سلاح، قضاياي بنيادين حساب را مي آموزد و ثابت مي كند و در امتحانات نمرات خوبي هم مي گيرد (چنين چيزي كاملاً ممكن است؛ نگاه كنيد به (Wright۱۹۸۳) و (Boolos۱۹۸۷). اگر او ندانست كه سزار عدد است يا نه ( كه نمي داند)، بايد نتيجه بگيريم كه نمرات او حقه بازي اند؟ يا به صدق قضاياي حساب معرفت ندارد؟ بنابراين، آن كودك توانايي هاي كافي اي براي قضاوت در مورد نسبت هاي عددي دارد ولي انگار فاقد نوعي معرفت متافيزيكي است. پس اجازه دهيد كه كمي راجع به بعد متافيزيكي مساله جوليوس سزار صحبت كنيم؛ در اينجا بايد بگوييم كه چرا محال است كه انواع كاملاً متفاوتي از شيء ها (اعداد و اشخاص) همپوشاني كنند.

 مي توانيم دلايلي بياوريم؛ اعداد انتزاعي اند و اشخاص انضمامي. يك راه اثبات اين خاصيت براي اعداد اين است كه بگوييم اعداد بي نهايت اند و اشخاص متناهي. ولي تنها نتيجه اي كه از اين حرف مي گيريم اين است كه همه اعداد نمي توانند انضمامي باشند، ولي چه بسا بعضي از اعداد انضمامي باشند. استدلال دوم براي اثبات «+» اين است كه بگوييم صدق هاي رياضي صدق هايي ضروري اند، و صدق هاي ضروري مستلزم موجودات ضروري اند. از آنجا كه اشخاص ً انضمامي، از جمله سزار، ممكن هستند، پس شيءهايي كه صدق هاي رياضيات بر آنها دلالت مي كنند ممكن نيست انضمامي باشند. اگر قرار است اين استدلال را به كرسي بنشانيم، بايد ابتدا اين ادعا را اثبات كنيم كه اشياي رياضي، به قول كريپكي، دلالتگر ثابت (rigid designator) اند. پس سوال اصلي «+» اين است كه چرا شيءهاي نوع K۱ نمي توانند خواص شيءهاي نوع K۲ را داشته باشند؟ و اين ما را بلافاصله به مساله سنتي متافيزيك، يعني جوهر(substance)، مي كشاند. و اصلاً معلوم نيست كه دست و پنجه نرم كردن با اين مساله غم انگيزتر از تلاش براي پاسخ به پرسش هاي اول مقاله نباشد.

 

هندسه نااقليدسي

هندسه ي اقليدسي، همان هندسه اي است كه شما در دبيرستان و راهنمايي خوانده ايد يا مي خوانيد. هندسه اي است كه بيش تر براي تجسم جهان مادي به كار مي بريم. اين هندسه از كتابي به نام اصول به دست ما رسيده كه توسط اقليدس ، رياضي دان يوناني ، در حدود ۳۰۰ سال پيش از ميلاد مسيح نگاشته شده است . تصوري كه ما بر اساس اين هندسه ازجهان مادي پيدا كرده ايم تا حدي زياد توسط آيزاك نيوتن در اواخر سده ي هفدهم ترسيم شده است. اقليدس شاگرد مكتب افلاطون بود.درحدود ۳۰۰ سال پيش از ميلاد، روش قاطع هندسه ي يوناني و نگره ي اعداد را دراصول سيزده جلديش منتشر كرد. با تنظيم اين شاهكار، اقليدس تجربه وكارهاي مهم پيشينيان خود را در سده هاي جلوتر گردآوري كرد.كار عظيم اقيدس اين بودكه چند اصل ساده ، چند حكم كه بي نياز به توجيهي پذيرفتني بودند را دستچين كرد واز آن ها ۴۶۵گزاره نتيجه گرفت كه بسياري از آن ها پيچيده بودند و به طور شهود ي بديهي نبودند وتمام اطلاعات زمان او را دربرداشتند .

 يك دليل زيبايي اصول اقليدس اين است كه اين همه را از آن اندك نتيجه گرفت .درافسانه آمده است كه يكي از آموزندگان مبتدي هندسه از اقليدس پرسيد : ( از آموختن اين مطالب چه عايد من مي شود ؟ ) اقليدس غلامش را خواند وگفت ((سكه اي به او بده ، چون كه مي خواهد از آن چه كه فرا مي گيرد، چيزي عايدش شود )).

 حال دراين جا به بيان پنج اصل اقليدس مي پردازيم .

 ـ اصل اول اقليدس : به ازاي هر نقطه ي p وهر نقطه ي Q كه با p مساوي نباشد، خط يكتايي وجود داردكه برp و Q مي گذرد.

 اين اصل اغلب به صورت غير رسمي چنين بيان مي شود : "هر دو نقطه يك خط منحصر به فرد را مشخص مي سازند ."

 ـ اصل دوم اقليدس : به ازاي هر پاره خط AB وهر پاره خط CD نقطه ي منحصر به فردي چون E وجود دارد، چنان چه؛ B ميان A وE واقع است وپاره خط CD با پاره خط BE قابل انطباق است .

 اين اصل اغلب به طور غير رسمي چنين بيان مي شود : "هر پاره خط AB را مي توان به اندازه ي پاره خط BE ، كه با پاره خط CD قابل انطباق است امتداد داد ."

 ـ اصل سوم اقليدس : به ازاي هر نقطه ي A كه با O مساوي نباشد، دايره اي به مركز O وشعاع OA وجود دارد .

 ـ اصل چهارم اقليدس : همه ي زاوياي قائمه باهم قابل انطباق هستند.

چهار اصل اول اقليدس هميشه به راحتي مورد قبول رياضي دانان بوده است. ولي اصل پنجم ( اصل توازي ) تا سده ي نوزدهم موجب جدل و چون و چرا بوده است درواقع چنان چه كه بعداً خواهيد ديد توجه به صورت هاي مختلف اصل توازي اقليدس است كه موجب بسط و توسعه ي هندسه هاي نااقليدسي شده است .

دراين جا ما اصل توازي اقليدس را بيان مي كنيم ( به خاطر دشواري هايي كه وجود دارد ) وبه جاي آن اصل پلي فر را كه معادل اصل توازي اقليدس است بيان مي كنيم .

ـ اصل پنجم اقليدس ( اصل پلي فر يا اصل توازي ) : به ازاي هر خط L وهر نقطه ي p غير واقع برآن، تنها يك خط مانند m وجود دارد چنان چه از p مي گذرد و با L موازي است .

اصل پنجم با هر چهار اصل ديگر متفاوت است . بدين معني كه ما نمي توانيم به طور تجربي تحقيق كنيم كه آيا دو خط هم ديگر را قطع مي كنند يانه . زيرا كه ما فقط پاره خط ها را مي توانيم رسم كنيم نه خطها را . مي توانيم پاره خط ها را بيش از بيش امتداد دهيم تا ببينيم كه آيا هم ديگر قطع مي كنند يا نه، ولي نمي توانيم آن ها را تا بي نهايت امتداد دهيم .

رياضي دانان درطول دو هزار سال تلاش كردند تا آن را از چهار اصل ديگر نتيجه بگيرند و يا اصل ديگري را كه به خودي خود بداهت بيش تري داشته باشد، جانشين آن سازند. همه ي تلاش ها براي اين كه آن را از چهار اصل ديگر نتيجه بگيرند به ناكامي انجاميد . رياضي دانان به تدريج نااميد مي شدند . ولي در اوايل سده ي نوزدهم دو هندسه ي ديگري پيشنهاد شد . يكي هندسه ي هذلولوي ( از كلمه ي يوناني هيپر بالئين به معني افزايش يافتن كه در آن فاصله ي ميان نيم خط ها افزايش مي يابد و ديگري هندسه ي بيضوي (از كلمه ي يوناني اليپن به معني كوتاه شدن) كه در اين ، فاصله رفته رفته كم مي شود و سرانجام نيم خط ها هم ديگر را مي برند (قطع مي كنند). اين هندسه هاي نا اقليدسي بعد ها توسط ك. ف . گاؤس و گ. ف. ب ريمان در قالب هندسه ي كلي تري بسط داده شدند.

ما سعي مي كنيم بيش تر بحث مان در حوزه ي هذلولوي باشد، زيرا هندسه ي هذلولوي تنها به تغيير يكي از اصول اقليدس نياز دارد و مي تواند به همان آساني هندسه ي دبيرستاني فهميد ه شود. ولي در مورد هندسه هاي ديگر، مثل هندسه ي بيضوي ، بحث خيلي مشكل تر مي باشد و درك آن نياز به دانستن مفاهيم زيادي دارد كه از حوصله ي بحث ما خارج است.

ـ قضيه ي كلي هذلولوي: درهندسه ي هذلولوي به ازاي هر خط L و هر نقطه ي p غير واقع بر L لااقل دو خط موازي با L ازp مي گذرند .دانش آموزان مي توانند اين قضيه را با اصل پنجم اقليدس كه درصفحات قبل آمده است مقايسه نمايند وتفاوت هاي اين دو هندسه را به وضوح مشاهده كنند .

ـ قضيه : درهندسه ي هذلولوي مستطيل وجود ندارد ومجموع زواياي همه ي مثلث ها از است .

ـ فرع: درهندسه ي هذلولوي همه ي چهار ضلعي هاي كوژ، مجموع زوايايي كم تر از دارند .
 

تكامل رياضيات

وقتي مي گوييم رياضيات اين دوره با سمت گيري كاربردي به پيش رفته است به اين معنا نيست كه در زمينه رياضيات نظري كاري انجام نشده است بلكه تنها به اين معناست كه عامل اصلي پيشرفت رياضيات انگيزه بيروني آن (يعني زندگي، عمل و نيازهاي ناشي از آنها) بوده است.   
دوره دوم تكامل رياضيات با سمت گيري كاربردي را (كه در ضمن دوره سوم تكامل رياضيات بود) بايد از سده هشتم تا سده شانزدهم ميلادي دانست، دوره اي كه گرانيگاه آن در ايران بود. زندگي مسئله هاي تازه اي را پيش آورد كه بايد به ياري رياضيات حل مي شد و رياضيات نظري دوره پيش (رياضيات يوناني) از عهده حل آنها بر نمي آمد. اين مسئله ها به طور عمده مربوط مي شد به اخترشناسي، مكانيك (ساختن ساعت هاي مكانيكي، اسطرلاب و ساير ابزارهاي لازم براي رصد، ظريف تر و دقيق تر كردن وسيله هاي فلزي، سفالي و...) و مسئله هاي ناشي از اعتقادهاي ديني (پيدا كردن جهت قبله، حل مسئله هاي مربوط به تقسيم ارث و عمل كردن به وصيت نامه ها، كه گاه بسيار پيچيده بود)، گسترش ارتباط هاي بازرگاني، ساختن قصرها و پرستشگاه ها، ايجاد كاريزها و آبراه ها و...

و رياضيات با استفاده از همه دستاوردهاي دوره هاي قبل (و به ويژه رياضيات يونان و هند) با سمت گيري كاربردي (كه در سطحي بسيار بالاتر از رياضيات كاربردي دوره قبل از يونان بود)، به تكامل خود ادامه داد. اگر از استثناها بگذريم، همه رياضيدانان اين دوره، از پسران «موسي شاكر» تا «جمشيد كاشاني»، ايراني بوده اند.

وقتي مي گوييم رياضيات اين دوره با سمت گيري كاربردي به پيش رفته است به اين معنا نيست كه در زمينه رياضيات نظري كاري انجام نشده است بلكه تنها به اين معناست كه عامل اصلي پيشرفت رياضيات انگيزه بيروني آن (يعني زندگي، عمل و نيازهاي ناشي از آنها) بوده است.

رياضيدانان ايراني اين دوره با اطلاع از كارهاي يونانيان و هنديان و با استفاده از ذخيره فرهنگي غني قوم هاي ساكن ايران تلاش كردند كمبودها و شكاف هاي نظري رياضيات يوناني را برطرف كنند.

آنها بارها و بارها «مقدمات» اقليدوس را به بحث انتقادي كشاندند، روش هاي بطلميوسي را كه در «المجسطي» آمده بود، تصحيح كردند و تكامل دادند، پايه هاي جبر و مثلثات و به طور كلي رياضيات محاسبه اي را ريختند، با بررسي دقيق مربوط به نسبت ها مفهوم عدد حقيقي را به عنوان يك كميت پيوسته وارد رياضيات كردند، پايه هاي اصلي هندسه نااقليدوسي را بنا نهادند، روش هاي ارشميدس را در زمينه «انتگرال گيري» تكامل بخشيدند و غيره و غيره. ولي در همه اين زمينه ها توجه اصلي رياضيدانان ايراني، به نيازهاي زندگي و دانش هاي ديگر بوده است. خوارزمي جبر را به دليل دشواري هايي كه در فقه اسلامي براي تقسيم ارث وجود داشت، پديد آورد. نيمه نخست كتاب «جبر و مقابله» خوارزمي، بحثي نظري درباره راه حل معادله هاي درجه اول و درجه دوم- هم با محاسبه و هم به كمك استدلال هاي هندسي- است. البته خوارزمي از نمادهاي جبري استفاده نمي كند و مسئله ها را به صورت توصيفي حل مي كند، ولي دقت در روش هاي حل او، ما را به دستوري مي رساند كه امروز، براي حل معادله درجه دوم، به كار مي بريم.

خوارزمي و رياضيدانان ايراني بعد از او، عدد منفي را- جز در برخي حالت هاي استثنايي- به كار نمي برند، به معادله هاي بالاتر از درجه سوم توجهي نداشتند (خيام، در كتاب جبر خود، برخي از گونه هاي معادله درجه سوم را به كمك مقطع هاي مخروطي حل كرده است) و اغلب تنها به يكي از ريشه هاي معادله، اكتفا مي كردند و همه اينها به دليل توجه اصلي آنها به عمل و نيازهاي زندگي بوده است. به طور مثال، رياضيدانان ايراني (به پيروي از رياضيدانان يوناني)، اگر طول پاره خط راست را برابر a مي گرفتند،a۲ را مربعa (يعني مساحت مربعي به ضلع برابر a) و a۳ را مكعبa (يعني حجم مكعبي به ضلع برابر a) مي گفتند، اصطلاح هايي كه هنوز هم معمول اند. در واقع توان دوم را به معناي مساحت و توان سوم را به معناي حجم مي گرفتند و چون در زندگي عملي، با جسم چهار يا پنج بعدي سروكار نداريم، بحث درباره معادله هاي بالاتر از درجه سوم را - جز در حالت هاي نادر مثل معادله هاي سيال كرجي - بي معني مي دانستند.

فارابي در كتاب بزرگ موسيقي خود، براي نخستين بار در جهان، نظريه علمي موسيقي را مطرح مي كند و جنبه هاي مختلف آن را مورد بحث قرار مي دهد (در تقسيم بندي فارابي از دانش ها، موسيقي بخشي از رياضيات به شمار مي آيد) پيش از فارابي، اگر از موسيقي عملي عيلام و بابل و مصر و هند بگذريم، تنها در يونان بحث هايي در زمينه موسيقي در جريان بود كه بيشتر جنبه متافيزيكي داشت و آميخته با وهم و تخيل بود.

فارابي مباني فيزيكي و رياضي موسيقي را بررسي كرده و نخستين كتاب علمي موسيقي را ارائه داده است. ابوالوفا و بيروني بيش از ديگران دستورهاي مثلثاتي را كشف و ثابت كردند و اين به دليل دشواري هايي بود كه در اخترشناسي و محاسبه هاي مربوط به آن پيش مي آمد. بطلميوس بيشتر استدلال ها و محاسبه هاي خود را بر اساس هندسه و قضيه ها و مسئله هاي آن انجام مي داد و اين كار را بسيار دشوار مي كرد. «ابوالوفاي بوزجاني» و «ابوريحان بيروني»، براي رفع اين دشواري ها بود كه مثلثات را شكوفا كردند و پيش بردند و سرانجام «نصرالدين توسي» با تاليف «كشف القناع» خود استقلال مثلثات را از هندسه اعلام كرد. «جمشيد كاشاني» براي همين محاسبه هاي اخترشناسي (او پايه گذار رصدخانه الغ بيگ در سمرقند بود) و به اين دليل كه راه هاي قبلي (مانند راه ابوالوفا)، اندكي طولاني و تا اندازه اي غيردقيق بود، روش جبري حل معادله درجه سوم: ۴x۳-۳x = a را براي پيدا كردن مقدار دقيق سينوس يك درجه (از روي سينوس سه درجه) به دست آورد.

رياضيدانان ايراني، اندازه سينوس زاويه هاي ،۱۵ ،۱۸ ،۳۰ ،۴۵ ،۶۰ ،۷۲ ۷۵ درجه (و در نتيجه، كسينوس آنها) را مي شناختند و مقدار سينوس سه درجه را با بسط (۱۵- ۱۸) sin به دست مي آوردند. بايد به اين نكته اشاره كنيم كه اغلب مورخان دانش حتي با انصاف ترين آنها نتوانسته اند مقام رياضيات ايراني را، در مجموعه تاريخ رياضيات به درستي و روشني ارزيابي كنند. اغلب آنها رياضيدانان ايراني را تا حد مترجمان ساده نوشته هاي يوناني پايين آورده اند كه اين ترجمه ها هم به موقع خود، به صاحبان اصلي يعني اروپاييان برگشت داده شده است. به اين ترتيب مورخان رياضي آغاز رياضيات را در اروپا (يونان) مي دانند كه بعد از سقوط مكتب اسكندريه در سده هاي سوم و چهارم ميلادي، دوران فترتي به وجود مي آيد كه تا سده پانزدهم ميلادي ادامه دارد و سپس با دسترسي اروپاييان به نوشته هاي يوناني (از راه ترجمه عربي آنها) دوباره دنبال كار را مي گيرند و آن را به امروز مي رسانند.

تاريخچه رياضي در قرن17

اين قرن يكي از مهمترين قرنها در تاريخ رياضيات است زيرا اساساْدامنه تحقيقات گسترده در رياضي، در همين قرن بر بشر گشوده شد، شايد به دليل آزاديهاي فكري بيشتر، پيشرفتهاي سياسي، اقتصادي و اجتماعي و در نتيجه رفاه بيشتر زندگي-به ويژه در مقابل سرما و تاريكي شمال اروپا.

پيشرفت علم رياضي در اين قرن آنقدر وسيع و گوناگون است كه حتي نوشتن خلاصه اي از آن نيز مثنوي هفتاد من كاغذ خواهد شد. به ناچار بايد به گزينش بعضي از كارهاي اصيلتر و مهم تر در تاريخ رياضي اين قرن تن داد. از مهمترين اكتشافات - و شايد هم اختراعات - رياضي در اين قرن مي توان به مطالب زير اشاره كرد:

الف) كشف لگاريتم

ب) تدوين علامات و نمادگذاريهاي كنوني جبري

ج) گشوده شدن پهنه جديدي در هندسه محض به ويژه هندسه تصويري

د) آغاز اتصال جبر و هندسه با كشف هندسه تحليلي

ه) پيشرفتي شگرف در نظريه اعداد و نيز تولد نظريه احتمال

و) كشف يكي از بزرگترين دستاوردهاي بشر يعني حساب ديفرانسيل و انتگرال

شايد بهترين راه براي بررسي تاريخ رياضي اين قرن، شرح مختصري از زندگاني رياضيدانان برجسته قرن هفدهم باشد.

رياضيدانان برجسته قرن هفدهم:

1. نپر: چهار اختراع، بشر را در فن محاسبه چيره دست كرد: نماد گذاري هندي-عربي، چگونگي محاسبه مربوط به كسرها، لگاريتم و رايانه ها. «جان نپر» سومين اختراع را به نام خود ثبت كرد. او به طرز عجيبي، هم سياسي و هم مذهبي بود و نبوغ او در پيشگويي وسايل جنگي چهار قرن بعد از خود اعجاب آور است. تعريف لگاريتم به وسيله نپر، بيشتر فيزيكي است تا رياضي. بد نيست بدانيم كه پايه لگاريتم نپر بر خلاف تصور عموم، عدد e نيست بلكه معكوس e است كه البته خود او چيزي در اين زمينه نمي دانست. تذكر اين نكته لازم است كه در تكميل مفهوم لگاريتم و جداول مربوط به آن، «هنري بريگز» كه يكي از دوستان نپر بود، سهم بسزايي دارد و لگاريتم معمولي در پايه ۱۰ را معمولاْ «لگاريتم بريگزي» مي نامند. لگاريتم به معناي «عدد نسبت» است كه البته اين مفهوم، همان طور كه ذكر شد بر اساس تابع تواني -كه هم اكنون تدريس مي شود- به وجود نيامد و يكي از امور خلاف قاعده در تاريخ رياضيات، كشف لگاريتم، پيش از به كار بردن نماهاست. البته سه اختراع مهم ديگر نيز در تاريخ رياضي، به نام جان نپر به ثبت رسيده است. (مراجعه كنيد به صفحه ۴ جلد دوم كتاب تاريخ رياضيات هاوارد د. ايوز.)

2. پاسكال: اين نابغه فرانسوي، يكي از بنيانگذاران هندسه محض و پيشرفته و نيز نظريه احتمال است. خواص اصلي اشكال معروف هندسي را در كودكي، بدون معلم و فقط با تلاشهاي خودش به دست آورد. در شانزده سالگي مقاله اي درباره مقاطع مخروطي نوشت و در هجده يا نوزده سالگي، اولين ماشين حساب مكانيكي را اختراع كرد. اما متاسفانه در طول ۳۹ سال زندگي، به دليل افراط و تفريطهاي مذهبي، جسم ضعيف خود را بارها و بارها آزرد و چندين بار از رياضيات دست كشيد و دوباره به آن بازگشت. پاسكال را به عنوان يكي از بزرگترين «چه ها كه مي شد!!» در تاريخ رياضيات شمرده اند. بعضي از كارهاي او عبارتند از:

- تاليف مقاله مهمي درباره خواص اصلي مثلث خيام-پاسكال كه در آن به طور جالبي از قديمي
ترين احكام قابل قبول استقراي رياضي استفاده شده است.

- كشف و اثبات قضيه مشهور «هگزاگرام رمزي» كه درباره يك ۶ ضلعي محاط در يك مقطع
مخروطي است.

- پي ريزي علم احتمال به همراه «فرما» (رياضيدان بزرگ فرانسوي). اين علم به وسيله مكاتباتي
بين پاسكال و فرما در تلاش براي حل «مساله امتيازها» در يك بازي شانسي به وجود آمد.

- اثري درباره منحني سيكلوئيد. اين منحني توسط نقطه اي واقع بر محيط يك دايره، هنگامي كه
دايره در امتداد خط مستقيمي بدون اصطكاك مي غلطد، رسم مي شود. اين منحني دهها
خواص جالب و بسيار زيبا دارد و اختلافات بسياري بين رياضيدانان ايجاد كرد به طوري كه به آن
«سيب نفاق» گفتند (اين نام بر اساس يك افسانه يوناني انتخاب شده است، براي مطالعه آن
به پاورقي صفحه ۲۷ جلد دوم كتاب تاريخ رياضيات هاوارد د. ايوز مراجعه فرماييد). جالب است
كه از دوران اين منحني حول محور طولها، چيزي شبيه به سيب ايجاد مي شود.

3. دكارت: دكارت را معمولاْ مبدع هندسه تحليلي مي دانند كه از روشهاي جبري براي حل مسائل هندسي استفاده مي كرد. اين كار كمك بسياري در ساده سازي مفاهيم هندسي و حل مطالب غامض و پيچيده آن كرد. او همچنين به حل معادلات با درجات بالاتر از ۲ پرداخت و قاعده زيبايي را به نام «قاعده علامات دكارت» براي تعيين تعداد ريشه هاي مثبت و منفي يك چند جمله اي به دست آورد(مراجعه كنيد به صفحه ۷۰ جلد دوم كتاب تاريخ رياضيات هاوارد د. ايوز). او براي اولين بار از روش ضرايب نامعين استفاده كرد كه همان متحد قرار دادن دو چند جمله اي هم درجه براي به دست آوردن ضرايب نامعين است. البته دكارت در جهان بيرون از رياضيات، فيلسوف بسيار مشهوري است و مطالب بسياري را به جهان فلسفه تقديم كرده است كه البته بعضي از آنها كاملاْ نادرست هستند. در ضمن داستانهاي جالبي درباره چگونگي كشف هندسه تحليلي به او نسبت مي دهند كه ارزش آموزشي زيادي دارد (مراجعه كنيد به صفحه ۵۰ جلد دوم كتاب تاريخ رياضيات هاوارد د. ايوز).

4. فرما: معمولاْ فرما را بزرگترين رياضيدان قرن هفدهم فرانسه مي دانند. او حقوقدان بود و شغل رسميش وكالت بود، اما قسمت مهمي از ساعات فراغت خود را وقف رياضيات مي كرد. او در بسياري از شاخه هاي رياضيات كارهاي مهم و اساسي انجام داده است كه مهمترين اين كارها عبارتند از:

- تحقيقات اساسي پيرامون هندسه تحليلي. فرما را بايد در كنار دكارت يكي از موسسان
هندسه تحليلي ناميد. معمولاْ گفته مي شود كه كارهاي فرما عكس كارهاي دكارت بوده است.
دكارت از مكان هندسي شروع مي كرد و به معادله آن مي رسيد، اما فرما از معادله شروع و
سپس مكان هندسي آن را مطالعه مي كرده است.

- تاسيس نظريه نوين اعداد. فرما شهود و توانايي خارق العاده اي در نظريه اعداد داشت. قضاياي
بسياري را در اين زمينه با اثبات يا بدون اثبات بيان كرد كه بعدها درست بودن اغلب قضاياي ثابت
نشده او به ثبوت رسيد(مراجعه كنيد به صفحه ۵۲ و ۵۳ جلد دوم كتاب تاريخ رياضيات هاوارد د.
ايوز). حدس مشهور او به نام «حدس آخر فرما» در آخرين دهه قرن بيستم به اثبات رسيد!

- فرما به همراه پاسكال اساس علم احتمال را پي ريزي كرد.

- فرما در حساب ديفرانسيل نيز كارهاي اساسي كرد. او ظاهراْ اولين كسي بود كه از طريق
معادله f'(x)=0 نقاط ماكزيمم و مي نيمم يك تابع را به دست آورد(مراجعه كنيد به صفحه ۹۳
جلد دوم كتاب تاريخ رياضيات هاوارد د. ايوز). همچنين او يك روش كلي براي يافتن مماس بر
نقطه اي از يك منحني كه مختصات دكارتي آن معلوم باشد، ابداع كرد(مراجعه كنيد به صفحه ۹۳
جلد دوم كتاب تاريخ رياضيات هاوارد د. ايوز).

5. رياضيدانان معروف قرن ۱۷ كه قبل و يا همزمان با نيوتن مي زيستند و در شكل گيري و پيشرفت
حساب ديفرانسيل و انتگرال نقش بسزايي داشتند: (۱) سيمون استوين (۲) لوكا والريو (اين دو همان روشي را به كار بردند كه ما براي پيدا كردن حجم يك جسم در حساب انتگرال به كار مي بريم.) (۳) كاواليري (۴) فرما (۵) جان واليس (نماد معروف بي نهايت را نيز به او مديونيم.) (۶) آيزاك برو (كه احتمالاْ قضيه اساسي حسابان را اولين بار او ثابت كرد.)

6. نيوتن: صحبت كردن پيرامون نيوتن و كارهاي او ساده نيست. رياضيدان و فيزيكداني كه به گفته لاگرانژ بزرگترين نابغه اي است كه در جهان زيسته است. همچنين «لايبنيتز» رقيب سرسخت او در ستايشي بزرگ منشانه، نيمي از كارهاي انجام شده رياضي بشر تا عهد نيوتن را متعلق به نيوتن مي داند. انساني كه در ۲۳ سالگي به درجه اي رسيد كه مي توانست مماس و شعاع انحنا در يك نقطه از منحني را پيدا كند. روشي كه امروزه تحت عنوان حساب ديفرانسيل شناخته مي شود. در ۲۷ سالگي به استادي دانشگاه برگزيده شد و حدود ۶۵ سال در رياضيات و فيزيك كار كرد. پاپ دستاوردهاي نيوتن را بدين صورت بيان كرده است: «طبيعت و قوانين طبيعت در ظلمت نهفته بودند، ذات باري فرمود نيوتن به وجود آيد و همه چيز روشن شد.» البته نيوتن نيز خاضعانه در مقابل ستايشها مي گفت كه من همچون كودكي در حال بازي در كنار دريا هستم كه گاهي صدفهاي زيبايي توجهم را جلب مي كند اما اقيانوسي از حقايق كشف ناشده در مقابلم قرار دارد. يكبار هم گفت كه اگر افق ديد او گسترده تر از ديگران است بدين علت است كه بر دوش غولان ايستاده است و شايد منظور او از غولان، ارشميدس و امثال او باشند. كارهاي رياضي او به طور خلاصه به شرح زير است:

- تاليف كتاب« اصول رياضي فلسفه طبيعي» كه با اصرار «هالي» ستاره شناس معروف و با هزينه او در سال ۱۶۸۷ چاپ شد. اين كتاب به مطالعه دستگاه ديناميكي پديده هاي زميني و سماوي مي پردازد و يك صورت بندي رياضي از اين پديده هاست. اين كتاب پرنفوذ ترين اثر در تاريخ علم به حساب مي آيد و تاثير بسياري بر دنياي جديد داشت. تاريخ رياضيات ابتدايي اساساْ با آن پايان مي يابد.

- بسط روش بي نهايت كوچكها يا همان حساب ديفرانسيل و نيز روشهاي مربوط به سريهاي نامتناهي

- بسط روشهاي مربوط به ماكزيمم و مي نيمم توابع، مماس بر منحني ها، انحناي منحني ها، نقاط عطف، تحدب و تقعر منحني ها، محاسبه مساحتهاي زير منحني ها و طول قوس آنها

- ارائه روشي براي تقريب زدن مقادير ريشه هاي حقيقي يك معادله جبري يا غير جبري و نيز روشهاي زيبايي براي مطالعه منحني هاي درجه سوم

7. لايبنيتز: اين نابغه جامع رياضيات، فلسفه، الاهيات و حقوق، رقيب جدي نيوتن در ابداع حسابان بود. عقيده رايج امروز اين است كه نيوتن و لايبنيتز، حسابان را مستقل از يكديگر كشف كردند، اما لايبنيتز نتايج را زودتر انتشار داد، هر چند كه كشف نيوتن زودتر انجام شده است، اما متاسفانه مشاجره اسفباري بين اين دو بر سر تقدم در كشف حسابان در گرفت و هر كدام خود را موسس حساب ديفرانسيل و انتگرال مي دانست. هر دو نيز در اين مناقشه زيان ديدند، به ويژه نيوتن و رياضيدانان همعصر او در انگلستان. البته لازم است ذكر شود كه لايبنيتز را بزرگترين نابغه جامع قرن هفدهم مي نامند و ظاهراْ تنها شخص شناخته شده تاريخ رياضيات است كه هم در رياضيات پيوسته و هم در رياضيات گسسته داراي انديشه اي عالي بوده است. بد نيست بدانيم كه لايبنيتز در واقع يك سياستمدار و يك ديپلمات بود كه براي انجام كارهاي سياسي به كشورهاي ديگر سفر مي كرد. كارهاي او در رياضيات به طور خلاصه عبارتند از:

- ارائه قسمت مهمي از نمادهاي كنوني ما در حساب ديفرانسيل و انتگرال از قبيل نماد dx و dy/dx و علامت انتگرال كه از S كشيده Summa -يك كلمه لاتين به معناي مجموع- اقتباس شده است. هم اكنون از نمادهاي نيوتن آنچنان استفاده نمي شود.

- استخراج بسياري از قواعد مقدماتي مشتق گيري كه معمولاْ در ابتداي درس مشتق در سطوح مختلف دبيرستاني و دانشگاهي آموزش داده ميشود. قاعده يافتن مشتق n-ام حاصلضرب دو تابع را قاعده لايبنيتز مي ناميم (مراجعه كنيد به صفحه ۱۱۳ جلد دوم كتاب تاريخ رياضيات هاوارد د. ايوز).

- تلاش براي پايه گذاري نظريه پوشها و تعريف دايره بوسان براي اولين بار

- ارائه اولين ايده ها در منطق رياضي و نظريه مجموعه ها. او مجموعه تهي و احتواي مجموعه ها را نيز مطالعه كرده است و متوجه شباهتهاي نظريه مجموعه ها و منطق رياضي شده است (به طور مثال شباهت قوانين دمرگان در نظريه مجموعه ها و منطق).

- لايبنيتز احتمالا جزو اولين رياضيداناني است كه نظريه قدرتمند دترمينانها را براي حل دستگاه معادلات خطي پديد آورده اند

X